Effects of idebenone on metabolism of monoamines and cyclic AMP formation in rats.

Nagai Y, Narumi S, Kakihana M,
Yamazaki N, Nagaoka A, Nagawa Y.

Central Research Division,
Takeda Chemical Industries, Ltd. Osaka, Japan.
Arch Gerontol Geriatr 1989 May;8(3):273-89


Idebenone at a dose of 100 mg/kg (i.p.) markedly increased the level of 5-hydroxyindole-3-acetic acid (5-HIAA) in several brain regions without affecting monoamine contents in normal rats. In rats with cerebral ischemia, idebenone (10 mg/kg, i.p.) normalized the decreased levels of 5-HIAA in the cerebral cortex, hippocampus, diencephalon and brain stem. A 5-hydroxytryptamine (serotonin, 5-HT) biosynthesis inhibitor, DL-p-chlorophenylalanine (PCPA, 150 mg/kg, i.p.) decreased the levels of 5-HT to one-third of the control level 24 h after administration. Idebenone (10, 30, or 100 mg/kg, i.p.), administered 24 h after the treatment with PCPA, accelerated the PCPA-induced 5-HT decreased in the hippocampus, diencephalon and brain stem in a dose-dependent manner. Idebenone (100 mg/kg, i.p.) stimulated the release of 5-HT in the dorsal hippocampus as determined by in vivo differential pulse voltammetry. Idebenone, like p-chloroamphetamine (PCA), stimulated 5-HT release from slices of hippocampus and diencephalon, and the formation of cyclic AMP in a concentration-dependent manner in rat diencephalon slice. This stimulation was almost completely blocked by methysergide, a 5-HT receptor blocker. Idebenone slightly and PCA markedly inhibited 5-HT uptake into hippocampus slices. The mechanism of the 5-HT releasing actions of idebenone in the hippocampal slices may be mediated through endogenous calcium. These results suggest that idebenone has an enhancing effect on the turnover of 5-HT in the hippocampus, diencephalon, and brain stem of rats.